University of Computer Studies D.C.Sc.

CM-502

COURSE DESCRIPTION

Course code number	CM-502	Course Title	Linear Programming
No. of Credit Units	3	Course Coordinator	Dr. Ei Phyo Wai

Course Description

This course covers introduction to Linear Programming, Solving Linear Programming Problems: The Simplex Method, Duality Theory and Sensitivity Analysis, Other Algorithms for Linear Programming.

Course Outcomes

Students who complete the course will be able to

- 1. Obtain an overview of the kinds of problems linear programming has been used to solve.
- 2. Learn how to develop linear programming models for simple problems.
- 3. Be able to identify the special features of a model that make it a linear programming model.
- 4. Learn how to solve two variable linear programming models by the graphical solution procedure.
- 5. Be able to interpret the computer solution of a linear programming problem.
- 6. Understand the inventory models and the advantages and limitations of inventory theory.

Assessment Plan for the Course

Class Attendance and Participation	-	10%
Quizzes	-	10%
Assignment	-	10 %
Moodle Test	-	10%
Tutorial	-	10%
Final Exam	_	50%

University of Computer Studies D.C.Sc.

Tentative Lesson

No	Topics	Week	Remark
I	Introduction to Linear		
	Programming		
1	Prototype Example,	Week 1	Assignment 1
2	The Linear Programming Model	Week 2	Assignment 2
3	Assumptions of Linear Programming	Week 3 Week 4	Assignment 3
	Additional Examples	Week 5	Assignment 4
			Assignment 5
			Assignment 6
4	Some Case Studies W		Assignment 7
5	Graphical Method		Assignment 8
-	Displaying and Calving Linear Dragramming	Week 7	Assignment
6	Displaying and Solving Linear Programming Models on a Spreetsheet Week 8		Assignment 9
II	Solving Linear Programming Problems: The Simplex Method		
7	The Essence of The Simplex Method	Week 9	Assignment 9
8	Setting Up The Simplex Method Week 10		Assignment 10
9	The Algebra of The Simplex Method		Assignment 11
10	The Simplex Method In Tabular Form	Week 11	Assignment 12
11	Adapting To Other Model Forms		Assignment 13+14
	Tutorial I		
III	Duality Theory and Sensitivity Analysis		
12	The Essence of Duality Theory Week 13 Week 14		Assignment 15
13	Economic Interpretation of Duality	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Assignment 16
14	Primal-Dual Relationships Week 15 Adapting To Other PrimalForms		Assignment 17
15			Assignment 18
IV	Other Algorithms for Linear Programming		
16	The Dual Simplex Method	Week 16	Assignment 19
<u> </u>			

University of Computer Studies D.C.Sc.

\mathbf{V}	Introduction to concept of Mathematical		
	Modelling		
18	Steps in building Mathematical Model		Assignment 20
		Week 17	
19	Classical Optimization and Combinatorial		
	Optimization		
	Tutorial II	Week 18	